TEST NAME: A-APR.3 Schoolnet TEST ID: 1582893 GRADE: 09 - Ninth Grade SUBJECT: Mathematics TEST CATEGORY: School Assessment

Student:		
Class:		
Date:		

 What are all the zeros of this polynomial? y = x(x+1)(x-2)²(x+8)³
 A 1, -2, and 8
 B. -1, 2, and -8

- C. 0, 1, -2, and 8
- D. 0, -1, 2, and -8

2. Which function **best** represents the graph below?

- A $g(x) = x(x-2)^2(x+3)$
- B. $g(x) = (x-2)^2(x+3)$
- C. g(x) = x(x-2)(x+3)
- D. g(x) = (x-2)(x+3)

3. The function f(x) opens upward, and its zeros are -5 and 3. Which graph best represents f(x)?

- 4. Let $p(x) = -x^2 + 5x 4$. Which statement describes the graph of p(x)?
 - A The graph has no *x*-intercepts and opens upward from its vertex, the minimum point.
 - ^{B.} The graph has 2 *x*-intercepts and opens downward from its vertex, the maximum point.
 - ^{C.} The graph has 2 *x*-intercepts and opens upward from its vertex, the minimum point.
 - D. The graph has no *x*-intercepts and opens downward from its vertex, the maximum point.
- 5. What is the x-intercept of the graph of $y = (x 5)^2$?
 - A <u>-25</u>
 - В. <u>-5</u>
 - C. 5
 - D. 25
- 6. Which of these functions **best** represents the graph shown below?

- A f(x) = (x+2)(x-3)
- B. f(x) = (x+3)(x-2)
- C. f(x) = x(x+2)(x-3)
- D. f(x) = x(x+3)(x-2)
- 7. Which of these **best** exemplifies a sketch of the graph of the polynomial

- 8. What are the zeros of the polynomial function below?
 - $f(x) = (x^2 16)(x + 5)x$
 - A -5, -4, 0, 4
 - B. -4,0,4,5
 - c. -5, -4, 4
 - D. -5, 0, 4

^{9.} Which function **best** represents the graph below?

- A f(x) = (x+1)(x-2)
- B. f(x) = x(x+1)(x-2)
- C. $f(x) = (x + 1)^2 (x 2)^3$
- D. $f(x) = x(x+1)^2(x-2)^3$

10. Which set of ordered pairs represents the *x*-intercepts of the function y = (x - 5)(2x + 3)?

^A
$$(-5, 0)$$
and $\left(\frac{3}{2}, 0\right)$
^{B.} $(0, -5)$ and $\left(0, \frac{3}{2}\right)$
^{C.} $(0, 5)$ and $\left(0, -\frac{3}{2}\right)$
^{D.} $(5, 0)$ and $\left(-\frac{3}{2}, 0\right)$

- ^{11.} At which points does the graph of the polynomial $f(x) = x^3 + 5x^2 + 6x$ intersect the *x*-axis?
 - A 3, 2, and 0
 - B. 0, 2, and 3
 - C. -3 and -2
 - D. 2 and 3

- ^{12.} The 3rd-degree polynomial function P(x) has roots at -3, -1, and 14, and a *y*-intercept of 6. Which of the following statements MUST be true?
 - A. P(6) = 0
 - B. P(4) = 50
 - C. $P(x) \le 86$ for all real values of x.
 - D. P(x) has a double root at x = 14.
- 13. Which function has zeros at -4, 2, and 0?
 - A. $f(x) = x^3 + 2x^2 8x$
 - B. $f(x) = x^3 2x^2 8x$
 - C. $f(x) = x^2 + 2x 8$
 - D. $f(x) = x^2 2x 8$
- 14. The function g(x) approaches positive infinity as x approaches positive infinity. The zeros of the function are -1, 2, and 4. Which graph best represents g(x)?

15. Which is the correct way of finding the real zero of $f(x) = 8x^3 + 216$?

- A. Divide_216by 8 and find the cube root of the result.
- B. Divide 216 by 8 and find the cube root of the result.
- C. Find the cube root of -216 and divide the result by 8.
- D. Find the cube root of 216 and divide the result by 8.

^{16.} Four functions are listed below.

f(x)	$(x^2 - 4)(x - 1)$
g(x)	(x + 4)(x - 6)
h(x)	$(x^2 + 6)$
<i>k</i> (<i>x</i>)	$x(x^2 - 25)$

Which two functions, when graphed, have the same number of x-intercepts?

- A f(x) and g(x)
- B. g(x) and h(x)
- ^{C.} h(x) and k(x)
- D. k(x) and f(x)

^{17.} What is the set of real zeros of the function $f(x) = (x^2 + 2500)(x^2 - 1600)?$

- A {40}
- B. {-40, 40}
- C. {-50, 50}
- D. {-50, -40, 40, 50}

18. Which graph **best** represents the function $f(x) = (x-3)^2(x+4)$?

- ^{19.} The roots of a quadratic equation are 5 and $\frac{2}{3}$. If one of the two factors of the equation is x = 5, which expression could be a second factor?
 - A. 2x 3
 - B. 2x + 3
 - C. 3x 2
 - D. 3x + 2
- ^{20.} Let the function $f(x) = (x + 4)(x^2 36)(x^2 + 25)$. What are all the *x*-intercepts for the graph of f(x)?
 - A. -4,6
 - B. -6, -4, 6
 - C. -6, 4, 6
 - D. -6, -5, 4, 5, 6
- ^{21.} Which function, when graphed, would have the same zero(s) as the function below?

- f(x) = x(x+6)
- $\mathsf{B.}\quad f(x)=x(x-6)$
- C. $f(x) = (x+6)^2$
- D. $f(x) = (x 6)^2$

22. Which of the following functions has the same set of zeros as the function $f(x) = x^2 - 6x + 8$?

- A g(x) = x 4B. $g(x) = x^2 - 5x + 6$
- C. $g(x) = 2x^2 12x + 16$
- D. $g(x) = x^3 6x^2 + 8x$

^{23.} What is the end behavior for the polynomial function $f(x) = -6x^4 + 3x^2 - 7?$

- A $x \to -\infty$, $f(x) \to \infty$ $x \to \infty$, $f(x) \to -\infty$
- B. $x \to -\infty$, $f(x) \to \infty$ $x \to \infty$, $f(x) \to \infty$
- C. $x \to -\infty$, $f(x) \to -\infty$ $x \to \infty$, $f(x) \to -\infty$
- D. $x \to -\infty$, $f(x) \to -\infty$ $x \to \infty$, $f(x) \to \infty$

^{24.} Which of these could represent the factors of the polynomial graphed below?

- A. (x+3)(x+2)
- B. (x 3)(x 2)
- C. (x 3)(x + 2)
- D. (x+3)(x-2)

^{25.} Which of the following is the set of real zeros of the function $f(x) = (x^3 + 1000)(x^4 - 160, 000)?$

- A {-10, 20}
- B. {-20, 20}
- C. {-20, -10, 20}
- D. {-20, -10, 10, 20}

^{26.} Consider the following graph of a function.

Which polynomial function is represented by this graph?

- A. $f(x) = (x-1)^2(x-5)^2$
- B. $f(x) = (x+1)^2(x+5)^2$
- C. $f(x) = (x^2 + 1)(x + 5)^2$
- D. $f(x) = (x^2 1)(x 5)^2$
- ^{27.} A toy rocket is launched vertically upward from a height of 96 feet above the ground. The height, *h*, of the rocket above the ground after *t* seconds is given by the function $h(t) = -16t^2 + 80t + 96$. Which equation can be used

to find the time it takes for the rocket to return to the height from which it was launched?

- A. -16(t+3)(t+2) = 0
- B. -16(t-6)(t+1) = 0
- C. -16(t-5) = 0
- D. -16(t+5) = 0

28. Which graph best represents a polynomial function with zeros located at -5, 0, and 8?

- ^{29.} The roots of a quadratic equation are 6 and $\frac{3}{4}$ If one of the two factors of the equation is $\chi = 6$, what is the second factor?
 - A 3x 4
 - B. 3x + 4
 - C. 4x 3
 - D. 4x + 3

30. For which of the following equations is $\chi = -2$ not a solution?

- A. |x| = 2
- B. $x^2 = 4$
- C. (x+2)(x-3) = 6
- D. (3x+6)(x-3) = 0
- 31. Which graph **best** represents the function $f(x) = x^3 + 4x$?

- ^{32.} Which polynomial has exactly 2 positive *x*-intercepts?
 - A $y = x^3 7x + 6$
 - B. $y = x^3 7x 6$
 - C. $y = x^3 + 4x^2 + x 6$
 - D. $y = x^3 6x^2 + 11x 6$
- ^{33.} Based on factoring, which equation **best** represents the graph below?

D. $y = 9x^2 - 1$

34. Which value is not a solution to the equation 2m(m-1)(3m-1) = 0?

- A. *m* = 0
- B. $m = \frac{1}{3}$
- C. *m* = 1
- D. *m* = 2

^{35.} What are the zeros of the polynomial function $f(a) = a^3 + 4a^2 - 32a$?

- A -8 and 4 only
- B. -4 and 8 only
- C. −8, 0, and 4
- D. -4, 0, and 8

