Calculator Steps to Graphing Scatter Plots on TI-84 Plus:

To enter data into a list (L_1) : [List 1 data should be your x-values or your independent variable]

STAT	ENTER

"1: Edit"

Enter data into L_1 , press

ENTER

after entering a piece of data.

Next, arrow over to the next column, L_2 . [List 2 data should be your y-values or your dependent variable]

Enter data into L_2 , press

ENTER

after entering a piece of data.

If there is old data in the list, To clear a list:		
Arrow up to highlight the list-(example L_1)	CLEAR	ENTER

To create a Scatter Plot after entering data into L_1 and L_2 :

2^{nd} Y =	"Stat Plot"	ENTER	ENTER
--------------	-------------	-------	-------

Make sure the graph screen looks like the picture below. Make sure that "**Plot 1**" is highlighted and "**On**". Make sure the "**Type**" is the type highlighted below. It is really important that XList: L_1 and YList: L_2 .

Hit

TRACE

and then you can right and left arrow through the plot.

Find the TREND/LINE OF BEST FIT FROM THE DATA YOU ENTERED:

4

STAT

Arrow over to "**CALC**" then

"LinReg(ax+b)"

Make sure XList: L_1 and YList: L_2 . Arrow down to "**Calculate**" and hit **EN**

When you get the answer:

y = ax + b,

a = # a is your SLOPE/RATE OF CHANGE

b = # b is your Y-intercept.

Find Correlation Coefficient of Scatterplot/line of best Fit:

Diagnostics on your calculator must be turned ON!

How to turn on Diagnostics:

1) Press MODE

2) Use the arrow keys to highlight Stat Diagnostics ON and press

ENTER

(you will have to scroll down to find "Stat Diagnostics")

MATHPRINT CLASSIC
NORMAL SCI ENG
FLOAT 0123456789
RADIAN DEGREE
FUNCTION PARAMETRIC POLAR SEQ
THICK DOT-THICK THIN DOT-THIN
SEQUENTIAL SIMUL
REAL a+bi re^(0i)
FULL HORIZONTAL GRAPH-TABLE
FRACTION TYPE: n/d Un/d
ANSWERS: AUTO DEC FRAC-APPROX
GO TO 2ND FORMAT GRAPH: NO YES
STATDIAGNOSTICS: OFF ON
STATWIZARDS: ON OFF
SET CLOCK 02/03/13 3:32AM

To Calculate Correlation Coefficient after you've turned on the Stat Diagnostics you calculate the "LinReg" (Linear Regression) using steps on the top of this page.

<u>Correlation Coefficient-</u>determination is a statistical measure of how well the regression line approximates the real data points. An R² of 1.0 indicates that the regression line perfectly fits the data.

 $r^2 = Correlation coefficient$

ENTER

Calculator Steps to Graphing Box Plots on TI-84 Plus:

To enter data into a list (L_1) : [List 1 data should be your x-values or your independent variable]

Make sure the graph screen looks like the picture below. Make sure that "**Plot 1**" is highlighted and "**On**". Make sure the "**Type**" is the type highlighted below. It is really important that XList: L_1

Calculator Steps to Graphing Histograms on TI-84 Plus:

To enter data into a list (L_1) : [List 1 data should be your x-values or your independent variable]

WINDOW If you want to change the height and width of the histogram you need to go to

and change the "XScl=". The higher the scale the wider the bars, the lower the scale, the skinnier the bars.

Calculator Steps to Calculate Summary Statistics:

To enter data into a list (L_1) : [List 1 data should be your x-values or your independent variable]

Calculator Steps to Calculate Exponential Equation from Table:

To enter data into a list (L_1) : [List 1 data should be your x-values or your independent variable]

after entering a piece of data.

Next, arrow over to the next column, L_2 . [List 2 data should be your y-values or your dependent variable]

Next your screen should like the image below. Make sure XList: says L_1 since that is the independent variable and that YList: says L_2 since that is the dependent variable.

<u>Calculator Steps to Calculate Linear Equation from</u> <u>Table:</u>

To enter data into a list (L_1) : [List 1 data should be your x-values or your independent variable]

Calculator Steps to Calculate Quadratic Equation from Table:

To enter data into a list (L_1) : [List 1 data should be your x-values or your independent variable]

Graphing Quadratic Equations

TO GRAPH ANY QUADRATIC EQUATION:

1) Equation must be in STANDARD FORM: $ax^2 + bx + c = 0$ (must be set = to 0)

2) Type equation into **Y** = and then press **GRAPH**

3) Go to Press Zoom 6 to graph on a standard screen.

HINT: If you cannot see the graph try:

- Zoom 3 will zoom out, Enter
- Change the window: We usually change Y-Max or X-Max

TO FIND THE VERTEX:

1) Graph the equation and decide on a MAXIMUM or MINIMUM.

2) 2^{nd} then press **TRACE** (CALC), Maximum (4) or Minimum (3)

- 1. Left Bound? Move cursor to the left side of the parabola, ENTER
- 2. Right Bound? Move cursor to the right side of the parabola, ENTER
- 3. Guess? Move the cursor to the vertex (center), ENTER

VERTEX = (x, y)

TO FIND THE AXIS OF SYMMETRY:

- 1. The axis of symmetry is the x-coordinate of the vertex.
- 2. Write the equation as: x = #

Vertex = (x, y)AXIS OF SYMMETRY: x = _____

TO FIND THE X-INTERCEPTS (3 other names: SOLUTIONS, ROOTS, ZEROS):

1. Y1 = quadratic equation

Y2 = 0 (this graphs as the line y = 0 which is the same as the x-axis)

- 2. Graph the equation and determine how many intercepts the graph has (usually 2 roots).
- 3. 2ND CALC, Intersect (5)
- 4. First Curve? ENTER
- 5. Second Curve? ENTER
- 6. Guess? Move the cursor to the left or right...wherever you think the x-intercept is located, ENTER
- 7. Repeat this process (Steps 3-6) to find the second x-intercept, but remember to move your cursor to the second intersection this time.

X-INTERCEPTS: (x, 0) and (x, 0)

<u>TO FIND THE Y-INTERCEPT</u>: write as (0, *y*)

- 1. There are no calculator steps!!
- 2. The y-intercept is the "c" term or constant of the equation. $ax^2 + bx(+C)$