EOC Review- Unit I: FUNCTIONS 2017

MATH 1 Function Standards (EOC)

Standard	Summary F-IF.1Build an understanding that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. (Domain \& Range)	Problems
F-IF.2	Use function notation to evaluate linear, quadratic, and exponential functions for inputs in their domains, and interpret statements that use function notation in terms of a context. [evaluate $f(5)$ of $f(x)$]	Below
F-IF.5	Interpret a function in terms of the context by relating its domain and range to its graph and, where applicable, to the quantitative relationship it describes.	Below

Math 8 Function Standards (EOG)

Standard	Summary	Problems
8.F.1	Definition of a function; (input/output, vertical line test, list of ordered pairs)	Below
8.F.3	Is function linear or nonlinear given a table, graph, equation, or coordinate points.	Below
8.F.5	(Match/sketch a graph to a verbal description)	Below

EOC PRACTICE PROBLEMS:

F-IF.I Problems:

1. In which equation is y not a function of x ?

A $x=2 y-4$
B. $x=y^{2}+1$
C. $x^{2}=y-5$
D. $x^{2}=2 y+6$
2. In which table is y a function of x ?
A.

\boldsymbol{x}	\boldsymbol{y}
-2	-2
-1	-1
0	0
1	1
2	2

C.

\boldsymbol{x}	\boldsymbol{y}
2	-2
-1	-1
0	0
1	1
2	2
x	

B.

\boldsymbol{x}	\boldsymbol{y}
-2	-2
-1	-1
-2	0
-1	1
-2	2

D.

\boldsymbol{x}	\boldsymbol{y}
1	-9
0	8
0	-7
-1	6
2	-5

4. In which graph is y a function of x ?

A

C.

B.

D.

6. In which equation is y not a function of x ?

A

$$
y=2 x^{2}-5
$$

B.

$$
y^{2}=x+6
$$

C.

$$
-4 x+y=-3
$$

D.

$$
y=\frac{2}{x+3}
$$

7. In which table is y a function of x ?
c.

A

x	y
-3	4
-1	7
1	10
-3	13

x	y
-4	-8
-1	-10
-6	-12
-4	-14

B.

\boldsymbol{x}	\boldsymbol{y}
-2	3
0	4
2	3
4	6

D.

x	y
2	-5
2	-3
2	2
2	6

8. In which choice is y not a function of x ?
A. $y=8 x+6$
B. $y=3^{x}$
C. $y=6$
D. $x=-5$

F-IF. 2 Problems:

2. If $r(x)=120+18 x-3 x^{2}$, what is $r(2)$?
A. 120
B. 144
C. 168
D. 192
3. The function $f(x)=19,500(0.92)^{x}$ can be used to predict the value of a car x years from now. What is the predicted value of the car 21 months from now?

A $\$ 3,385.16$
B. $\$ 7,169.49$
C. $\$ 16,367.75$
D. $\$ 16,852.46$
5. Patrick bought a boat for $\$ 9,500$. The function $f(x)=9,500(0.70)^{x}$ models the value of the boat x years after he purchased it. How much did the value of the boat decrease in the first year after Patrick bought the boat?

A $\$ 1,597$
B. $\$ 2,850$
C. $\$ 6,650$
D. $\$ 7,903$
16. Mr. Levy invested $\$ 6,500$ at a 4.5% annual interest rate. The function $f(t)=6,500(1.045)^{t}$ models the value of the investment after t years. What is the value of the investment after 18 months?

A $\$ 6,872.56$
B. $\$ 6,943.65$
C. $\$ 11,349.20$
D. $\$ 14,355.11$
23. If $f(x)=x^{2}-x_{z}^{\text {what is } f(-5) \text { ? }}$

A -30
B. -20
C. 20
D. 30
28. The function $f(x)=40,000(1.03)^{X}$ is used to predict the population of a town x years after 2010. What is the meaning of $f(5)$?

A the population of the town in the year 2010 multiplied by 5
B. the year the population of the town reaches 5,000
C. the population of the town in 2005
D. the population of the town in 2015
47. If $g(x)=x^{2}+6$, what is the value of $g(x+1)$?

A 7
B. $x^{2}+1$
C. $x^{2}+x+6$
D. $x^{2}+2 x+7$
48. Suppose $f(x)=x^{2}$ and $g(x)=2 x-3$. What is the value of $g(4)+f(-3) ?$

A -4
B. 7
C. 14
D. 25

F-IF. 5 Problems:

1. A high school baseball team is having a fundraiser at a restaurant. The function $f(x)=4 x$ models the amount of money that the restaurant will donate to the team if x customers purchase dinner. The restaurant agrees to donate a maximum of $\$ 500$ to the team. What is the most appropriate domain of the function?

A all nonnegative integers ≤ 4
B. all nonnegative integers ≤ 125
C. all nonnegative integers ≤ 500
D. all nonnegative integers
2. The function $f(x)=3.33 x$ models the cost for Juan to fill his car with x gallons of gas. Juan's car can hold a maximum of 17 gallons of gas. What is the most appropriate domain of the function?

A $x \leq 17$
B. $x \leq 56.61$
C. $0 \leq x \leq 17$
D. $0 \leq x \leq 56.61$
3. Martin modeled the distance, y, that runners traveled during a race as a function of the time, x, that they ran. Which would best describe the domain of this function?

A all integers
B. all real numbers
C. all positive integers
D. all positive real numbers
4. An ice cream shop uses the function $f(p)=2.50 p-300$ to calculate the amount of profit or loss, $f(p)$, the store makes each day after selling p number of ice cream cones. Which domain is appropriate for the function and shows the ice cream shop making a profit?

A all positive integers
B. all positive rational numbers
C. all integers greater than 120
D. all rational numbers greater than 120
6. The function $h(t)=1,000(0.95)^{t}$ models the size of a mold culture t hours after being treated. What is the most appropriate domain for this function?

A all integers
B. positive integers
C. all rational numbers
D. positive rational numbers
7. The function $f(x)=1,575-225 x$ models the value of a computer x years after it was purchased. What is an appropriate domain for this function?

A $x \geq 0$
B. $x \leq 7$
C. $0 \leq x \geq 7$
D. $0 \leq x \leq 7$

$8^{\text {th }}$ grade EOG PRACTICE PROBLEMS:
 8.F. 1 Problems:

1. Which of the following relations is a function?

A $x=8$
B. $y=8$
C. $x=|8 y|$
D. $y^{2}=8 x$
2. Which equation is not a function?

A $y=x^{2}-4$
B. $x+2 y=8$
C. $x+y^{2}=16$
D. $y=3 x-20$
3. Which relation is a function?

A $\{(8,2),(6,5),(-6,0),(8,-4)\}$
B. $\{(2,2),(4,5),(-4,5),(6,7)\}$
C. $\{(0,2),(2,5),(4,6),(4,7)\}$
D. $\left\{(-4,-6),(-3,-5),(-2,-4),\left({ }^{-} 2,^{-} 3\right)\right\}$
4. An input-output table is shown.

Input	Output
1	1
2	4
3	9
4	16
5	25

What is the relationship between each input number and each output number in the table?
A Each input number is multiplied by 2 to get the output number.
B. Each input number is multiplied by itself to get the output number.
C. Each input number is added to 3 to get the output number.
D. Each input number is added to 9 to get the output number.
5. Which chart represents a function?
A

\boldsymbol{x}	\boldsymbol{y}
0	0
1	-1
1	1
4	2

C.

\boldsymbol{x}	\boldsymbol{y}
-2	2
2	-3
2	2
3	-3
\mathbf{x}	\mathbf{y}
3	2
3	-2
5	24
-5	24

6. Which ordered pair (x, y) makes the relation below a function?
$\{(1,2),(-2,4),(3,3),(-4,4),(x, y)\}$
A $(-4,-2)$
B. $(-2,3)$
C. $(3,2)$
D. $(5,1)$
7. Which of the equations shown below represents a function?

Equation 1: $y=x^{2}+2 x+9$
Equation 2 : $x=9-y^{2}$

A Only 1
B. Only 2
C. Both 1 and 2
D. Neither 1 nor 2

8.F. 3 Problems:

1. Which set of points are linear?

A $\left({ }^{-} 1,{ }^{-} 2\right),(0,6),(1,2)$
B. $\left(0,{ }^{-} 4\right),\left(1,{ }^{-} 1\right),(3,5)$
C. $(2,3),(4,2),(6,3)$
D. $(1,1),(4,16),(6,36)$
2. Which table shows a nonlinear function?

A

\boldsymbol{x}	\boldsymbol{y}
-2	8
-1	4
0	-2
1	-10

B.

\boldsymbol{x}	\boldsymbol{y}
-2	5
-1	4
0	3
1	2

C.

\boldsymbol{x}	\boldsymbol{y}
-2	-1
-1	1
0	3
1	5

3. In which table is y a nonlinear function of x ?

A

\boldsymbol{x}	\boldsymbol{y}
3	-2
3	0
3	4
3	5
3	8

C.

x	y
6	4
4	2
2	0
4	${ }^{-} 2$
6	${ }^{-} 4$

B.

\boldsymbol{x}	\boldsymbol{y}
6	4
4	2
2	0
0	2
-2	4

D.

\boldsymbol{x}	\boldsymbol{y}
-3	4
-2	5
-1	6
0	7
1	8

4. Which function is non-linear?

A

\boldsymbol{x}	\boldsymbol{y}
0	0
2	4
3	9

B.

x	y
2	1
4	3
6	5

C. $y=4$
D. $2 x-4 y=15$
6. Which relationship about earnings does not represent a linear function?

A a teacher's earnings based on a monthly salary
B. a realtor's earnings based on percent of weekly sales
C. a marketing director's earnings based on an annual salary
D. a construction worker's earnings based on an hourly wage
7. Bacteria grow in colonies over time. Which table shows growth of bacteria colonies that can be modeled by a linear graph?
A.

Time (in hours)	1	2	3	4
Number of Colonies	1	4	9	16

B.

Time (in hours)	1	2	3	4
Number of Colonies	5	10	15	20

C.

Time (in hours)	1	2	3	4
Number of Colonies	1	16	81	256

D.

Time (in hours)	1	2	3	4
Number of Colonies	5	25	125	625

10. Which function is not linear?
11. Which represents a linear function?
A. $y=\frac{5}{x}$
B. $y=x^{2}-3$
C. $y=|x-1|$
D. $y=\frac{1}{2} x+2$

A $\frac{y}{x}=2$
B. $y=3$
C. $y=\frac{6}{x}$
D. $x+y=-7$

8.F. 5 Problems:

2. A school bus was stopped for $\mathbf{2}$ minutes at a red light. When the light turned green, the driver accelerated the bus at a steady rate and then continued driving at a constant speed. Next, the driver decreased the speed of the bus until it came to a full stop to pick up students. Which graph below best represents the speed of the bus over the time described?
A

C.

B.

D.

3. The graph below details Sally's daily trip to work.

Which is the bestscenario for part 3 on the graph?

A Sally is waiting at a stop light.
B. Sally is driving on an incline at a constant rate.
C. Sally is driving on a highway at a constant rate.
D. Sally is speeding up then slowing down through a neighborhood.
4. Aki drove from home to visit a friend. His average speed during the first hour was 40 miles per hour (mph). For the next 3 hours he drove on the highway at 70 mph and then rested for 30 minutes. After the rest, Aki continued on the highway at 70 mph . Which graph best represents his distance from home as a function of time?
A.

B.

C.

D.

6. The graph below shows the relationship between two variables.

Which scenario is best represented by the graph?
A The value of a car decreased at a constant rate, remained constant for a while, and then began to increase.
B. The number of animals in the local zoo increased at a constant rate over the first ten years after the zoo opened.
C. The average rainfall in a town was constant for the first 4 months of the year. Over the next 6 months it increased and then gradually decreased.
D. The number of customers in a diner increased at a constant rate during the morning hours, remained the same during lunch, and decreased during the afternoon hours.
28. The graph shows different speeds, in miles per hour (mph), of a car traveling on a trip.

How fast was the car traveling in miles per hour (mph) between 25 minutes and 40 minutes?
A speeds between 20 mph and 50 mph
B. speeds between 35 mph and 0 mph
C. a constant speed of 40 mph
D. a constant speed of 50 mph

